211 research outputs found

    Influence of convolution filtering on coronary plaque attenuation values: observations in an ex vivo model of multislice computed tomography coronary angiography

    Get PDF
    Attenuation variability (measured in Hounsfield Units, HU) of human coronary plaques using multislice computed tomography (MSCT) was evaluated in an ex vivo model with increasing convolution kernels. MSCT was performed in seven ex vivo left coronary arteries sunk into oil followingthe instillation of saline (1/āˆž) and a 1/50 solution of contrast material (400Ā mgI/ml iomeprol). Scan parameters were: slices/collimation, 16/0.75Ā mm; rotation time, 375Ā ms. Four convolution kernels were used: b30f-smooth, b36f-medium smooth, b46f-medium and b60f-sharp. An experienced radiologist scored for the presence of plaques and measured the attenuation in lumen, calcified and noncalcified plaques and the surrounding oil. The results were compared by the ANOVA test and correlated with Pearsonā€™s test. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The mean attenuation values were significantly different between the four filters (pā€‰<ā€‰0.0001) in each structure with both solutions. After clustering for the filter, all of the noncalcified plaque values (20.8ā€‰Ā±ā€‰39.1, 14.2ā€‰Ā±ā€‰35.8, 14.0ā€‰Ā±ā€‰32.0, 3.2ā€‰Ā±ā€‰32.4 HU with saline; 74.7ā€‰Ā±ā€‰66.6, 68.2ā€‰Ā±ā€‰63.3, 66.3ā€‰Ā±ā€‰66.5, 48.5ā€‰Ā±ā€‰60.0 HU in contrast solution) were significantly different, with the exception of the pair b36fā€“b46f, for which a moderate-high correlation was generally found. Improved SNRs and CNRs were achieved by b30f and b46f. The use of different convolution filters significantly modifief the attenuation values, while sharper filtering increased the calcified plaque attenuation and reduced the noncalcified plaque attenuation

    Low Adiponectin Levels Are an Independent Predictor of Mixed and Non-Calcified Coronary Atherosclerotic Plaques

    Get PDF
    Atherosclerosis is the primary cause of coronary artery disease (CAD). There is increasing recognition that lesion composition rather than size determines the acute complications of atherosclerotic disease. Low serum adiponectin levels were reported to be associated with coronary artery disease and future incidence of acute coronary syndrome (ACS). The impact of adiponectin on lesion composition still remains to be determined. We measured serum adiponectin levels in 303 patients with stable typical or atypical chest pain, who underwent dual-source multi-slice CT-angiography to exclude coronary artery stenosis. Atherosclerotic plaques were classified as calcified, mixed or non-calcified. In bivariate analysis adiponectin levels were inversely correlated with total coronary plaque burden (r = -0.21, p = 0.0004), mixed (r = -0.20, p = 0.0007) and non-calcified plaques (r = -0.18, p = 0.003). No correlation was seen with calcified plaques (r = -0.05, p = 0.39). In a fully adjusted multivariate model adiponectin levels remained predictive of total plaque burden (estimate: -0.036, 95%CI: -0.052 to -0.020, p<0.0001), mixed (estimate: -0.087, 95%CI: -0.132 to -0.042, p = 0.0001) and non-calcified plaques (estimate: -0.076, 95%CI: -0.115 to -0.038, p = 0.0001). Adiponectin levels were not associated with calcified plaques (estimate: -0.021, 95% CI: -0.043 to -0.001, p = 0.06). Since the majority of coronary plaques was calcified, adiponectin levels account for only 3% of the variability in total plaque number. In contrast, adiponectin accounts for approximately 20% of the variability in mixed and non-calcified plaque burden. Adiponectin levels predict mixed and non-calcified coronary atherosclerotic plaque burden. Low adiponectin levels may contribute to coronary plaque vulnerability and may thus play a role in the pathophysiology of ACS

    The role of multi-slice computed tomography in stable angina management: a current perspective

    Get PDF
    Contrast-enhanced CT coronary angiography (CTCA) has evolved as a reliable alternative imaging modality technique and may be the preferred initial diagnostic test in patients with stable angina with intermediate pre-test probability of CAD. However, because CTCA is moderately predictive for indicating the functional significance of a lesion, the combination of anatomic and functional imaging will become increasingly important. The technology will continue to improve with better spatial and temporal resolution at low radiation exposure, and CTCA may eventually replace invasive coronary angiography. The establishment of the precise role of CTCA in the diagnosis and management of patients with stable angina requires high-quality randomised study designs with clinical outcomes as a primary outcome

    Is there a role for CT coronary angiography in patients with symptomatic angina? Effect of coronary calcium score on identification of stenosis

    Get PDF
    Present guidelines discourage the use of CT coronary angiography (CTCA) in symptomatic angina patients. We examined the relation between coronary calcium score (CS) and the performance of CTCA in patients with stable and unstable angina in order to understand under which conditions CTCA might be a gate-keeper to conventional coronary angiography (CCA) in such patients. We included 360 patients between 50 and 70Ā years old with stable and unstable angina who were clinically referred for CCA irrespective of CS. Patients received CS and CCTA on 64-slice scanners in a multicenter cross-sectional trial. The institutional review board approved the study. Diagnostic performance of CTCA to detect or rule out significant coronary artery disease was calculated on a per patient level in pre-defined CS categories. The prevalence of significant coronary artery disease strongly increased with CS. Negative CTCA were associated with a negative likelihood ratio of <0.1 independent of CS. Positive CTCA was associated with a high positive likelihood ratio of 9.4 if CS was <10. However, for higher CS the positive likelihood ratio never exceeded 3.0 and for CS >400 it decreased to 1.3. In the 62 (17%) patients with CS <10, CTCA reliably identified the 42 (68%) of these patients without significant CAD, at no false negative CTCA scans. In symptomatic angina patients, a negative CTCA reliably excludes significant CAD but the additional value of CTCA decreases sharply with CS >10 and especially with CS >400. In patients with CS <10, CTCA provides excellent diagnostic performance

    Blooming Artifact Reduction in Coronary Artery Calcification by A New De-blooming Algorithm: Initial Study

    Get PDF
    The aim of this study was to investigate the use of de-blooming algorithm in coronary CT angiography (CCTA) for optimal evaluation of calcified plaques. Calcified plaques were simulated on a coronary vessel phantom and a cardiac motion phantom. Two convolution kernels, standard (STND) and high-definition standard (HD STND), were used for imaging reconstruction. A dedicated de-blooming algorithm was used for imaging processing. We found a smaller bias towards measurement of stenosis using the deblooming algorithm (STND: bias 24.6% vs 15.0%, range 10.2% to 39.0% vs 4.0% to 25.9%; HD STND: bias 17.9% vs 11.0%, range 8.9% to 30.6% vs 0.5% to 21.5%). With use of de-blooming algorithm, specificity for diagnosing significant stenosis increased from 45.8% to 75.0% (STND), from 62.5% to 83.3% (HD STND); while positive predictive value (PPV) increased from 69.8% to 83.3% (STND), from 76.9% to 88.2% (HD STND). In the patient group, reduction in calcification volume was 48.1 Ā± 10.3%, reduction in coronary diameter stenosis over calcified plaque was 52.4 Ā± 24.2%. Our results suggest that the novel de-blooming algorithm could effectively decrease the blooming artifacts caused by coronary calcified plaques, and consequently improve diagnostic accuracy of CCTA in assessing coronary stenosis

    Reduction in downstream test utilization following introduction of coronary computed tomography in a cardiology practice

    Get PDF
    To compare utilization of non-invasive ischemic testing, invasive coronary angiography (ICA), and percutaneous coronary intervention (PCI) procedures before and after introduction of 64-slice multi-detector row coronary computed tomographic angiography (CCTA) in a large urban primary and consultative cardiology practice. We utilized a review of electronic medical records (NotesMDĀ®) and the electronic practice management system (MegawestĀ®) encompassing a 4-year period from 2004 to 2007 to determine the number of exercise treadmill (TME), supine bicycle exercise echocardiography (SBE), single photon emission computed tomography (SPECT) myocardial perfusion stress imaging (MPI), coronary calcium score (CCS), CCTA, ICA, and PCI procedures performed annually. Test utilization in the 2Ā years prior to and 2Ā years following availability of CCTA were compared. Over the 4-year period reviewed, the annual utilization of ICA decreased 45% (2,083 procedures in 2004 vs. 1,150 procedures in 2007, PĀ <Ā 0.01) and the percentage of ICA cases requiring PCI increased (19% in 2004 vs. 28% in 2007, PĀ <Ā 0.001). SPECT MPI decreased 19% (3,223 in 2004 vs. 2,614 in 2007 PĀ <Ā 0.02) and exercise stress treadmill testing decreased 49% (471 in 2004 vs. 241 in 2007 PĀ <Ā 0.02). Over the same period, there were no significant changes in measures of practice volume (office and hospital) or the annual incidence of PCI (405 cases in 2004 vs. 326 cases in 2007) but a higher percentage of patients with significant disease undergoing PCI 19% in 2004 vs. 29% in 2007 PĀ <Ā 0.01. Implementation of CCTA resulted in a significant decrease in ICA and a corresponding significant increase in the percentage of ICA cases requiring PCI, indicating that CCTA resulted in more accurate referral for ICA. The reduction in unnecessary ICA is associated with avoidance of potential morbidity and mortality associated with invasive diagnostic testing, reduction of downstream SPECT MPI and TME as well as substantial savings in health care dollars

    Coronary 64-slice CT angiography predicts outcome in patients with known or suspected coronary artery disease

    Full text link
    The aim of this study was to assess the prognostic value of 64-slice CT angiography (CTA) in patients with known or suspected coronary artery disease (CAD). Sixty-four-slice coronary CTA was performed in 220 patients [mean age 63 +/- 11 years, 77 (35%) female] with known or suspected CAD. CTA images were analyzed with regard to the presence and number of coronary lesions. Patients were followed-up for the occurrence of the following clinical endpoints: death, nonfatal myocardial infarction, unstable angina, and coronary revascularization. During a mean follow-up of 14 +/- 4 months, 59 patients (27%) reached at least one of the predefined clinical endpoints. Patients with abnormal coronary arteries on CTA (i.e., presence of coronary plaques) had a 1st-year event rate of 34%, whereas in patients with normal coronary arteries no events occurred (event rate, 0%, p or =50% luminal narrowing) on CTA were associated with a high first-year event rate (59%) compared to patients without stenoses (3%, p < 0.001). The presence of obstructive lesions was a significant independent predictor of an adverse cardiac outcome. Sixty-four-slice CTA predicts cardiac events in patients with known or suspected CAD. Conversely, patients with normal coronary arteries on CTA have an excellent mid-term prognosis

    Assessment of atherosclerotic carotid plaque volume with multidetector computed tomography angiography

    Get PDF
    Purpose The amount of atherosclerotic plaque and its components (calcifications, fibrous tissue, and lipid core) could be better predictors of acute events than the now currently used degree of stenosis. Therefore, we evaluated a dedicated software tool for volume measurements of atherosclerotic carotid plaque and its components in multidetector computed tomography angiography (MDCTA) images. Materials and Methods Data acquisition was approved by the Institutional Review Board and all patients gave written informed consent. MDCTA images of 56 carotid arteries were analyzed by three observers. Plaque volumes were assessed by manual drawing of the outer vessel contour. The luminal boundary was determined based on a Hounsfield-Unit (HU) threshold. The contribution of different components was measured by the number of voxels within defined ranges of HU-values (calcification >130Ā HU, fibrous tissue 60ā€“130Ā HU, lipid core <60Ā HU). Interobserver variability (IOV) was assessed. Results Plaque volume was 1,259Ā Ā±Ā 621Ā mm3. The calcified, fibrous and lipid volumes were 238Ā Ā±Ā 252Ā mm3, 647Ā Ā±Ā 277Ā mm3 and 376Ā Ā±Ā 283Ā mm3, respectively. IOV was moderate with interclass correlation coefficients (ICC) ranging from 0.76 to 0.99 and coefficients of variation (COV) ranging from 3% to 47%. Conclusion Atherosclerotic carotid plaque volume and plaque component volumes can be assessed with MDCTA with a reasonable observer variability

    Small coronary calcifications are not detectable by 64-slice contrast enhanced computed tomography

    Get PDF
    Recently, small calcifications have been associated with unstable plaques. Plaque calcifications are both in intravascular ultrasound (IVUS) and multi-slice computed tomography (MSCT) easily recognized. However, smaller calcifications might be missed on MSCT due to its lower resolution. Because it is unknown to which extent calcifications can be detected with MSCT, we compared calcification detection on contrast enhanced MSCT with IVUS. The coronary arteries of patients with myocardial infarction or unstable angina were imaged by 64-slice MSCT angiography and IVUS. The IVUS and MSCT images were registered and the arteries were inspected on the presence of calcifications on both modalities independently. We measured the length and the maximum circumferential angle of each calcification on IVUS. In 31 arteries, we found 99 calcifications on IVUS, of which only 47 were also detected on MSCT. The calcifications missed on MSCT (nĀ =Ā 52) were significantly smaller in angle (27Ā°Ā Ā±Ā 16Ā° vs. 59Ā°Ā Ā±Ā 31Ā°) and length (1.4Ā Ā±Ā 0.8 vs. 3.7Ā Ā±Ā 2.2Ā mm) than those detected on MSCT. Calcifications could only be detected reliably on MSCT if they were larger than 2.1Ā mm in length or 36Ā° in angle. Half of the calcifications seen on the IVUS images cannot be detected on contrast enhanced 64-slice MSCT angiography images because of their size. The limited resolution of MSCT is the main reason for missing small calcifications

    Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control

    Get PDF
    The aim of this study was to assess the diagnostic accuracy of dual-source computed tomography (DSCT) for evaluation of coronary artery disease (CAD) in a population with extensive coronary calcifications without heart rate control. Thirty patients (24 male, 6 female, mean age 63.1Ā±11.3Ā years) with a high pre-test probability of CAD underwent DSCT coronary angiography and invasive coronary angiography (ICA) within 14Ā±9Ā days. No beta-blockers were administered prior to the scan. Two readers independently assessed image quality of all coronary segments with a diameter ā‰„1.5Ā mm using a four-point score (1: excellent to 4: not assessable) and qualitatively assessed significant stenoses as narrowing of the luminal diameter >50%. Causes of false-positive (FP) and false-negative (FN) ratings were assigned to calcifications or motion artifacts. ICA was considered the standard of reference. Mean body mass index was 28.3Ā±3.9Ā kg/m(2) (range 22.4ā€“36.3Ā kg/m(2)), mean heart rate during CT was 70.3Ā±14.2Ā bpm (range 47ā€“102Ā bpm), and mean Agatston score was 821Ā±904 (range 0ā€“3,110). Image quality was diagnostic (scores 1ā€“3) in 98.6% (414/420) of segments (mean image quality score 1.68Ā±0.75); six segments in three patients were considered not assessable (1.4%). DSCT correctly identified 54 of 56 significant coronary stenoses. Severe calcifications accounted for false ratings in nine segments (eight FP/one FN) and motion artifacts in two segments (one FP/one FN). Overall sensitivity, specificity, positive and negative predictive value for evaluating CAD were 96.4, 97.5, 85.7, and 99.4%, respectively. First experience indicates that DSCT coronary angiography provides high diagnostic accuracy for assessment of CAD in a high pre-test probability population with extensive coronary calcifications and without heart rate control
    • ā€¦
    corecore